Use ML.net recommender for recommendations (POC)

A while ago I wrote about how you can use ML.Net Recommender to add some smarts to your up-sell.

I decided to take it a step further and make it work for general product recommendations.

So I created a scheduled job that creates and trains the recommendation model, creates predictions for all available variations in advance, storing them in the database. In Quicksilver it takes about 10 minutes to create around 43000 recommendations.

To the “prediction engine” I added extra methods to get recommendations based on what’s in your cart, for 1 or more content references, returning references to the recommendations or the variations themselves. I also added one with some very basic “personalization”, based on the product you are viewing now combined with your previous ordered items.

I added an event listener to remove recommendations from the database when a variation gets deleted.

There is too much code to get into details but if you want to give it a test drive… you can find it here

As I said last time, I would probably not use it in a huge Commerce solution, Episerver Perform would be a better choice. But for small solutions it could be a nice addition.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s